Histogram Sort with Sampling: A review

Megha Agarwal
School of Computer Science
Carleton University
Ottawa, Canada K1S 5B6
meghaagarwal @cmail. carleton. ca

December 19, 2021

Abstract

Sorting poses as one of the most important areas of study in computer science owing
to its application in a wide variety of applications. This paper demonstrates a state-
of-the-art sorting algorithm which is efficient, accurate, and does not involve a lot of
data movement. Histogram Sort with Sampling[11] is an amalgamation of two sorting
algorithms by picking the best of both and balancing out any drawbacks. This has
been compared with two algorithms: HykSort[22] and AMS-sort[3] to demonstrate the
margin by which it excels.

1 Introduction

For any computer application today, most actions boil down to mere database access that
can help classify the data into a category. For example, with data analysis, a clear picture
of the data helps reach a conclusion, this becomes easy when a data is already sorted. There
has been great research on sorting algorithms which lead to algorithms like quick sort, merge
sort, sample sort[10], etc. This was until the focus was majorly on sequential processing,
but eventually, parallel processing was introduced along with its many benefits especially
the drop in the amount of time a computation would take. And sorting was not far from
this either. With the advent of parallelism in all domains, research included parallelism of
sorting algorithms, and this produced great results.

The primary goal of a parallel sorting algorithm is to partition the keys such that all
N keys are partitioned over the p processors in a globally sorted order, that is, no key on
processor k is greater than any key on processor k+1. This implies that the load on each
processor must be efficiently balanced. Splitting in parallel sort is used to determine the
number of elements on each processor that need to be sorted. Now, for an input sequence
of N elements to be processed on p processors, an exact splitting would be if each processor
houses N/p elements and an approximate splitting is observed when each processor contains
no more than N(14-€)/p elements, for any value of e. The combination of histogramming and
sampling prior to redistribution of keys minimizes data movement when sorting. Sampling
facilitates the partitioning using a representative set of keys while histogramming helps
by iterating over and evaluating the given partition numerous times. A natural way to
determine global partition is by deriving approximate splitters from targeted ideal splitters.
Sample sort, which works by selecting a random sample of data and partitioning the data
using these samples, can be used to achieve a deterministic balanced splitting. Histogram

sort[14] is a comparison based sorting algorithm that works on refining the splitters by
repeatedly creating histograms of the number of keys included in each set of the latest
splitter intervals. It is used to manage the load imbalance that may be incurred by the
determination of splitters and data exchange The chief idea of this algorithm is derived
from splitter intervals which are subranges about the ideal splitter keys that will produce
a globally sorted data. Each round of HSS consists of uniformly sampling the keys in each
splitter interval and then shrinking the interval to converge to the ideal splitters.

With the use of repeated histogramming combined with sampling, this algorithm is
proved to be robust to distributions with repeated keys and also effective in situations where
the data may be partially sorted. The implementation for this algorithm is performed using
Charm++-, which is C4++ based parallel-programming framework. The theoretical analysis
of this algorithm comprising of the execution cost in parallel, and performance evaluation
when compared to the algorithms that were just as good, prove HSS to be an algorithm that
can be chosen over the rest when working in a parallel environment. To give an overview
of the structure of this paper, Section 2 describes the previous work that helps derive this
algorithm, Section 3 highlights the problem that this algorithm address followed by the
description of the actual algorithm in Section 4. The evaluated result of the performance
of the algorithm under various scenarios is mentioned in the Section 5. Finally, Section 6
provides the conclusion and wraps up the paper.

2 Literature Review

The primary goal for any parallel sorting algorithm is to find a global partition. In such
partition-based algorithms, like quick sort, it is highly beneficial to partition the data before
redistributing it, in order to lower the communication cost. Two very efficient parallel
sorting algorithms, Parallel Quick Sorting Algorithm (PQSA) and Merging Subarrays from
Quick Sorting Algorithm (MSQSA), are proposed by Lingxiao Zeng in [25] but they perform
exceptionally with a complexity of %O (log%) with shared memory. However, the focus
of this project is over distributed memory parallel computers. The end result achieved in a
partition-based sort algorithm is a set of splitters that achieve a globally or locally balanced
splitting, after which they redistribute the keys. This generally occurs in a number of stages
where the data is split into number of processors and then sorted recursively.

2.1 Sample Sort

The Sample Sort algorithm[10] along with its variants[8], works as the building blocks of
this algorithm. It is a comparison based algorithm that has been worked on for a long
time now. The algorithm works by partitioning the data into multiple sets that can easily
be represented by a subset of keys. Each processor samples s keys, that are then sent to
the central processor to form an overall of ps keys. These keys when received at central
processor, are split into p ranges, determined by p-1 keys. The sampling method can
either be random[4] or regular[18] when determining the sample at each processor. Regular
sampling[18] is when every processor selects evenly spaced s keys to be the samples and
then selects splitters from these samples at the central processor. Random sampling[4] on
the other hand, is when the processor divides the data into blocks of size N/ps and then
randomly picks a key from each block. Here, s is called the oversampling ratio. When in
practical use, random sampling has proven to be more efficient but both methods do not

perform ideally with very large samples and there is a slight hinderance in the scalability.
So, how Sample Sort works is by undergoing the following steps:

1. Sampling Phase: Each processor samples s keys and sends it over to the central
processor resulting in a total of ps keys at the central processor, where s is called the
oversampling ratio.

2. Splitter determination: The central processor then sorts these samples and iden-
tifies p-1 splitters resulting in p partitions. These p-1 keys are then broadcast to
all the processor in order to exchange the data such that all keys on processor ¢ are
lesser than all keys on processor i+1 and the range of values that are stored on each
processor is determined the splitter keys.

3. Exchanging data: Once splitter keys are received, all processors exchange their
data in order to send them to their appropriate processors. This step requires an
all-to-all communication between processors. Once all the data is transferred to their
respective destinations, they are then locally sorted using any shared memory sorting
algorithm[25] such that the data on each processor is sorted.

These steps do result in a globally sorted data. However, the chances of observing a load
imbalance are high. So, to overcome that issue, ideas from Histogram Sort[14, 16] are used.
Further advancement on Sample Sort has resulted in probabilistic partitioning which does
not pick splitters after just one round of sampling, rather, it maintains a vector of splitter
candidates and iteratively refines it until the load balance achieved on all processors is
satisfactory[16].

2.2 Histogram Sort

This is a comparison based algorithm that is responsible for managing the load balancing
on each processor by maintaining a set of potential splitter keys and refining the splitter
interval by observing an histogram. This histogram shows the number of keys that fall
within the ranges defined by each of the candidate splitters over multiple iterations. Once
a satisfactory histogram is met, such that all processors have a nearly equal number of
keys, the splitters that lead to this partition are then selected as the final splitter keys. A
distributed histogram sort takes place in 4 basic steps:

1. Local Sorting: Each processor sorts its local data using any shared memory sorting
algorithm which has an expected time complexity of O(n log n).

2. Splitting: Generalizing the distributed selection algorithms, like median of partition
strategy with weighted medians, to distributed multi-selection, the local array is par-
titioned into P subsequences [16, 20]. Rather than determining one pivot, multiple
pivots are selected in each iteration, for each active range. When a pivot matching
a specific rank is found, that range is discarded and pivots for all other ranges is
examined from each of the two subranges. Here, each splitter is represented as a
tuple containing the splitter upper and lower bounds and the splitter value. So, any
splitter S; is successfully determined if the lower bound L; and upper bound U; satisfy
the condition L;(S;) < K;+1 < U;(S;), where K denotes the rank of splitter and i €
{1,2,...,P}. It is here that histogramming is performed, as mentioned in [16]. All
splitters are initialized with a minimum and maximum for the global range. Then,

the splitters are iteratively determined by converging the minimum and maximum for
each local histogram which is combined to form a global histogram. The complexity
for this is O(p(logp) + p(logn;)) per iteration.

3. Data exchange: All processors exchange their locally sorted sequences with all other
processors after determining all splitters. A permutation matrix is created where that
helps identify the send displacements for each processor i [16].

4. Local Merge: Finally, each processor locally merges the received sorted sequence.
There are two options possible here, either to sort the full array with a complexity
of O (%log%) using a fast shared memory algorithm or merge it out of place in

0] (%logp) time using a binary merge algorithm [16].

2.3 Other Partition-based sorting algorithms

AMS-sort[3] is another algorithm that works on the principal of histogramming and sam-
pling. The splitter determination done with one round of histogramming in AMS-sort is
observed to perform better than HSS with one round of histogramming by a significant
amount, O(min(log p,1/€)). But, this scanning algorithm is not easily generalizable to
multiple stages of histogramming whereas HSS can be extended to multiple stages without
much overhead. Also, the result obtained by HSS is seen to be globally balanced partitions
as compared to AMS-sort which produces a locally balanced splitting. When AMS-sort
is performed in a multistage manner, it can be done by a repetitive process of splitting
and data exchange over process that are decreasing in number. The scanning process in
AMS-sort works by deciding the splitters once the histogram is obtained. The system is
to scan through the global histogram and assign a maximum possible consecutive buck-
ets to one processor while considering the limit on the number of elements it can store.
So, if buckets up to z are assigned to the first y processors, then buckets z-+1,..., z+z
are assigned to processor y+I1. Quicksort algorithm adapted for hypercube by Wagar et
al.[23] works by identifying a pivot which divides the cube into two sub-cubes. Both these
partitions exchange data with each other based on the pivot and then merge the received
data into local data portion. This results in a globally sorted sequence after a recursion
depth of log(p). HykSort[22] as proposed by Sundar et al. is also a state-of-the-art parallel
sorting algorithm, derived from this idea, which works on the idea of splitting and data
exchange at multiple levels to attain a scalable algorithm. It is a derivation of quick sort
for hypercube[23] and sample sort which also uses histogramming and sampling principals
to sort the data in parallel. However, there is a significant difference between the sampling
method for HSS and HykSort which results in HykSort requiring at least (log p/log? logp)
samples more as compared to HSS, which showcases a slower convergence to final splitter
values.

3 Problem Statement

A parallel sorting algorithm chiefly aims at distributing all the keys on the available pro-
cessors in an ideal manner such that once the processing is done, all keys are in a globally
sorted manner, and the processors are appropriately load balanced. So, given a sequence
of N input elements, these must be partitioned into p ranges which is contained by p pro-
cessors, such that all keys from processor ¢ are less than all keys on processor i+1. The

elements of the input sequence are aimed to be rearranged to a globally sorted array R
such that if A(i)=R(j), then the key has rank j. In order to achieve a global sorting, the
splitters that partition the data must be ideal, such that each splitter S(i) = R(x;), where
R(x;) € 7; called the target range. Besides identifying ideal splitters, it is also essential for
an efficient parallel sorting algorithm to maintain the load-balance at all times, that is, that
no processor owns more than the approximate partition amount. From the results obtained
in [6], it can be understood that for any type of load balancing, an exact spliting can be
attained by some post-processing, which under a globally balanced distribution would take
only Ne/p steps. Ideally, the final histogram obtained must show an about equal number
of elements of each processor partitioned by each splitter. As can be seen from figure 1,
each interval contains a near equal number of elements.

S

N(1+€)ip

v

51 sz 53 5S4 S5 S6

Figure 1: Ideal global approximate sort

4 Proposed Solution

There has been a good amount of study on the parallel sorting algorithms in the PRAM
model, which shows best possible solution that can achieved takes O(logn/log? n)[7, 9].
However, this does not apply for distributed memory machines. So, for a distributed mem-
ory machine, the median of median algorithm[5] and its variants, median of partition[2],
weighted median[21] are used. Here, each processor figures out the median of its local parti-
tion and broadcasts it. Each median is weighted by its partition’s size. After each processor
performs a three-way partition around the weighted median to determine the subrange to
recurse in, the subset shrinks with each successive step. Taking into account the computa-
tion complexity of the select and the partition operations in this algorithm, further study
suggests to include additional optimizations which are that the selection of pivot is better
when using sampling[19] and another one is to split the group of p processors into subgroups
of O(y/p(7)) for the ith phase to result in a better complexity[17].

From the results obtained in all previous studies, Histogram Sort with Sampling[11] works
on the basic framework of the histogram sort, while also implementing a sampling phase
which will help identify the candidate probes for splitter determination. The central idea
of the algorithm is to sample elements at each processor, histogram over them, and adjust
the selected splitters.

For an input sequence A, with N elements to be processed over P processors such that
all elements are in a globally sorted order, is the main aim of this algorithm. Although
HSS with one round of histogramming is not as efficient as AMS-sort with one round of
histogramming, it can be easily generalized to multiple rounds resulting in a lower compu-

tation and communication overhead, as a constant number of rounds of histogramming are
enough to get an asymptotic improvement. Recall that a satisfactory i splitter is the one
that falls in the target range 7, = [Ni/p — Ne/2p, Ni/p + Ne/2p|. In a situation where for
all target ranges there is at least one key in each range, our final splitters would have been
found. From Theorem 4.2 [11], it can be seen that with only one round of histogramming
and using a sample size of O(plog(p)/e), a load balance of (14 ¢€) can be achieved with high
probability. The algorithm takes place in 4 major steps:

Local Sort: This is the initial step where the data on each processor is sorted
using any shared memory sorting algorithm that efficiently costs O(nlogn), like the
quicksort algorithm [24].

Splitter Determination: To split the data into P ranges to then be transferred
to respective processors. The histogramming and sampling methods are used to help
reach the ideal splitters.

Data Exchange: Once splitters are identified for a round, the data in each range
is then moved to each processor respectively. Doing this iteratively will place the
elements in a globally sorted order such that a processor 7 has all elements that are
smaller than all elements at processor i+ 1

Local Merge: Finally, when data arrives on each processor from all other processors,
they are merged together in a format that is locally sorted.

HSS can be made more efficient compared to other state-of-the-art algorithms by using re-
peated rounds of histogramming and sampling. This branches from the observation that the
samples for each round of histogramming can be obtained from the previous rounds, except
for the first round. So, the detailed explanation of each step that make up the procedure is
as follows:

Splitter Determination: It is during this step that the partitions are defined making
it the most important step to achieve global sorting. Both histogramming and sampling
take place in this step, but out of both of them, sampling is performed first. For sampling,
initially the entire input is considered. However, with subsequent steps, the data to sample
over keeps shrinking. All keys in the sample phase are picked with an equal probability of
ps1/N, where s is called the sampling ratio for the first round. Here, regular sampling [18]
has been used, where the processor picks evenly spaced keys because it is practically more
efficient owing to the ability to attain global balancing [12]. Rather than determining one
pivot, as in a sequential sort, we determine multiple for each range that has not found its
ideal splitter key from the input sample. If a pivot matching its specific rank is found, that
range is not further considered, otherwise the data within that range is sampled to locate
the splitter that best partitions it. Once samples have been determined they are collected
at the central processor and broadcast to all other processors as probes for the first round
of histogramming. When these samples are received at each processor, a local histogram is
constructed by counting the number of keys that fall between each splitter range. These
local histograms are then summed up to result in a global histogram that helps narrow the
interval converging to the ideal splitters. Now, for a splitter in each active range, a lower
bound(L;(i)) and upper bound(U;(i)) is maintained for the jy, round of histogramming
where L;(i) denotes the largest key smaller than the ideal splitter i and Uj(i) denotes the
smallest key greater than the i*" ideal splitter. Here, an ideal i splitter is calculated using

Ni/p. Each splitter is stored as a tuple of three values namely, the the splitter itself, its
lower bound and its upper bound. It is not complicated to determine the values of the lower
and bounds for every splitter as the data on each processor is locally sorted. So just using
a binary search on processor i, the bounds can be identified. t

N*1/p N*2ip N*3ip N*4ip N*5/p
Ideal Spitters | i H i |
Histogramming round 1 I ! : I E I I
L) oty Ly Uiz) L1(3) U@ L) U14) Lis) Ui
Splitter Intervals updated | : i i i : |
after 1 round | ; ! i ! ; |
Histogramming round 2 I i : I i I
L2(1) U2(1) L22) U2(2) L23) U2(3) L2(4) U2(4) L2(5) U2(5)
Splitter Intervals updated | . i : i |
after 2 rounds l H H !

Figure 2: HSS with multiple rounds of histogramming[11]

Once the lower and upper bounds are identified, the splitter interval is updated by the keys
that define the lower and upper bound values, restricting the data to be sampled in the
next round by Range;1(i) = I(L;(i)), 1(U;(i)). These updated intervals are then used in
the next round as the input to sample and further converge the splitter interval towards
ideal. After all processors have received the updated intervals, they begin the next round,
j + 1" round, of sampling. For k rounds of histogramming, if the sample size per round is
O(p {/log p/e), then HSS achieves a load balance of (1 + ¢) for a large enough p? with high
probability [11]. Further, in order to minimize the value of the number of rounds, k, we
derivate the sample size and equate it with zero, to get a minimized k as loglo%. Moving
forward with the algorithm, if the value of j < k, then the next round of histogramming be-
gins and process continues iteratively. However, if j=k, then the algorithm moves forward by
determining the final splitters as the keys closest to each Ni/p among all the keys seen so far.

Data FExchange: After the splitters have been determined, each processor performs a
MPI All-to-All communication where they exchange the data according to the splitters
identified such that each processor has data bounded by the splitter intervals. As a total
of p-1 splitters are defined the data can be partitioned into p sections. Each it splitter is
assigned to the i*" processor and keys are then transferred to the target processor to satisfy
the condition of globally sorted data.

Local Merge: Once data is received at each processor, it also must be merged in a locally
sorted order. Now this can be done either of the two ways, sort the full array after it has
been received or sort place the elements as received in a sorted order. So, this can be done
either using a tournament tree [15] or using a binary merge algorithm that takes O((N/p)
log p) time. Here, for a binary merge, it can start the merging as soon as data starts arriving
but for the tournament tree, all data needs to be present before any processing can start.

These steps help attain a state of data on all processors that is globally sorted. The ideal
situation would be if the data is near sorted. Then the splitters could be easily determined.
On the contrary, the worst case would arise when there are multiple keys that have the same
value. This would lead to the size of one particular bucket being way bigger than others,
that is, one processor would contain a lot more elements than proposed by approximate
splitting. In order to tackle this issue, each such key is labelled with 3 values, the value of
the element, the processor on which the key is located, and the index value which denotes
the index of the value in its local data structure. The evaluation of how it performs follows
in the next section.

5 Experimental Evaluation

The paper which proposed the HSS algorithm [11] describes the computation and commu-
nication costs incurred at multiple points during the algorithm including the local sort, data
exchange, etc. which are reviewed in this section followed by the experimental analysis for
the worst case situation where a huge fraction of keys have the same value.

Local Sort: The cost at which the local sorting takes place is O((N/p)log (N/p)). Once
this done, the splitters are broadcast to the central processor, which takes O(p) time. As
there is no communication taking place in the local sorting, there is no cost for that. After
the final splitters are determined, all data needs to be shuffled to reach their target processor,
which incurs a cost of O(N/p). And finally, the local merge step takes O((N/p)log p) time
for computation.

Sampling: Determining a sample on one processor having size S takes O(S) time. And
sorting the collected samples on the central processor takes O(S log p) time if random
sampling is used which collects S/p samples from each processor.

Histogramming: To create a local histogram of size S, the time taken is O(S log(N/p)).
Computing the global histogram from the local takes O(S) time which is an aggregate of
2 major steps, all-gather and reduce-scatter. And broadcasting the probes and splitter
intervals to every processor takes O(S) steps.All these computation and communication
cots indicate that the time complexity of HSS is highly dependent on the sample size.

For multiple stage HSS, the histogramming, sampling and data exchange takes O(1) BSP
super steps, so the total time is calculated by just multiplying this by the number of stages,
l. And the overall computation time of the local sort is calculated to be O((N log N)/p).

To analyze the performance of this algorithm in the worst-case situation where a huge
fraction of keys have the same value, Charm++ [1, 13] framework supported by C++ was
used. This enables the program to create numerous virtual processors called chares which
can be assigned to a node or core. The program runs the algorithm in three steps: local
sorting and merging, splitter determination using histogramming and sampling, and finally
the data exchange. The results from [11] display why the splitter determination in HSS is
better than AMS-sort [3] and HykSort [22] by depicting faster convergence to ideal splitters
in HSS. It is also observed that HSS samples according to the interval, that is, it samples
more keys for a larger interval and lesser keys for a smaller interval. However, that is not
the case with HykSort. So, in order to analyze how the algorithm performs for when there
are many keys with the same value, the algorithm was tested for the kind of dataset by
giving such numerical data values as input, which are a combination of random values and
a number of keys with the same value. These values were then randomly shuffled and stored
to pass as input to the main algorithm. To evaluate the effect of number of processors on

this dataset, the experiment was conducted on 3 clusters with 4,8, and 16 cores each. To
handle the duplicate values, the algorithm works by tagging them with 3 variables, that is,
the key, the processor that the key resides on and the index in the local array. So now when
such data causes load imbalance, the processor and index values help determine the number
of keys that are supposed to be moved to another processors. On a much smaller scale, if 30
out of 100 keys have the value 7 and these are to be processed using 10 processors then in
an ideal situation each processor must contain 10 keys to sort. but there will be one splitter
that places all the 30 keys onto one processor. However, this gives rise to a load imbalance.
To help overcome this, the processor and index values will be used. First the processor
value is checked to identify how many of the keys are on one processor, and which processor
they are on. Then using the index key, it is determined whether the initial few keys can be
moved from the " processor to i — 1! processor or the later keys are to be moved to the
i+ 1*h processor, and in case of this example, moved to both, the previous and the next
processors. Evaluating the results obtained, as shown in Figure 3, it can be seen that the

B Normal Situation [l Worst Case Situation

Time(sec)

8

Mumber of cores

Figure 3: Worst case situation evaluation for HSS

time required to sort the data shows a decrease with the increase in number of processors,
which was expected as the overall time complexity is inversely proportional to the number
of processor cores. And it also demonstrates the difference between the time taken for the
worst case situation and the dataset with all random values. Here, the value of € is taken
to be 0.1 denoting a 10% imbalance. Also, the size of dataset is 1000 values, and for the
worst case situation, 350 keys had the same value. A few more experiments were conducted
with varying values, but the resulting time obtained was similar to the results shown in the
chart. There does not seem to be much difference in the performance for both situations.
The small amount of additional time may be arising due to the additional steps to balance
the load and movement of the respective data.

6 Conclusions

Histogram Sort with Sampling works as an aggregation of the histogram sort and the sample
sort providing the best of both algorithms by sampling and managing the load imbalance.
From the initial work on the algorithm and the work mentioned in this paper, HSS seems to

be a robust partition-based sorting algorithm that works efficiently in theory and in practice
equally providing approximate and exact splitting. The reiteration mechanism to shrink the
splitter interval in order to reach the keys closest to ideal splitters is what helps make this
algorithm better than others.

References

[1]

[10]

[11]

[12]

Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil Langer, Harshitha Menon, FEric
Mikida, Xiang Ni, Michael Robson, Yanhua Sun, Ehsan Totoni, et al. Parallel pro-
gramming with migratable objects: Charm++ in practice. In SC’14: Proceedings of

the International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 647-658. IEEE, 2014.

Ibraheem Al-Furiah, Srinivas Aluru, Sanjay Goil, and Sanjay Ranka. Practical al-
gorithms for selection on coarse-grained parallel computers. IEEE Transactions on
Parallel and Distributed Systems, 8(8):813-824, 1997.

Michael Axtmann, Timo Bingmann, Peter Sanders, and Christian Schulz. Practical
massively parallel sorting. Proceedings of the 27th ACM symposium on Parallelism in
Algorithms and Architectures, 2015.

G. E. Blelloch and B. M. Maggs C. E. Leiserson. An experimental analysis of parallel
sorting algorithms. Theory of Computing Systems, 31(2):135-167, 1998.

Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, Robert Endre
Tarjan, et al. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448-461, 1973.

David R Cheng, Alan Edelman, John R Gilbert, and Viral Shah. A novel parallel
sorting algorithm for contemporary architectures. Submitted to ALENEX, 2006.

Richard John Cole. An optimally efficient selection algorithm. Information Processing
Letters, 26:295-299, 01 1988.

Frank Dehne and Hamidreza Zaboli. Deterministic sample sort for gpus. Parallel
Processing Letters, 22(03):1250008, 2012.

Paul F Dietz and Rajeev Raman. Small-rank selection in parallel, with applications to
heap construction. Journal of Algorithms, 30:33-51, 01 1999.

W. D. Frazer and A. C. Mckellar. Samplesort: A sampling approach to minimal storage
tree sorting. Journal of the ACM, 17(3):496-507, 1970.

Vipul Harsh, Laxmikant Kale, and Edgar Solomonik. Histogram Sort with Sampling.
In The 31st ACM Symposium on Parallelism in Algorithms and Architectures, pages
201-212, Phoenix AZ USA, June 2019. ACM.

David R Helman, Joseph JaJ4a, and David A Bader. A new deterministic parallel sort-
ing algorithm with an experimental evaluation. Journal of Experimental Algorithmics
(JEA), 3:4—es, 1998.

10

[13]

[14]

[15]

[16]

23]

[24]

[25]

Laxmikant V Kale and Sanjeev Krishnan. Charm++ a portable concurrent object
oriented system based on c++. In Proceedings of the eighth annual conference on
Object-oriented programming systems, languages, and applications, pages 91-108, 1993.

Laxmikant V. Kale and Sanjeev Krishnan. A comparison based parallel sorting algo-
rithm. 1993 International Conference on Parallel Processing - ICPP93 Vol3, pages
196-200, 1993.

Donald E Knuth. Art of computer programming, volume 2: Seminumerical algorithms.
Addison-Wesley Professional, 2014.

Roger Kowalewski, Pascal Jungblut, and Karl Furlinger. Engineering a distributed his-
togram sort. 2019 IEEFE International Conference on Cluster Computing (CLUSTER),
2019.

Fabian Kuhn, Thomas Locher, and Rogert Wattenhofer. Tight bounds for distributed
selection. In Proceedings of the nineteenth annual ACM symposium on Parallel algo-
rithms and architectures, pages 145153, 2007.

Xiaobo Li, Paul Lu, Jonathan Schaeffer, John Shillington, Pok Sze Wong, and Hanmao
Shi. On the versatility of parallel sorting by regular sampling. Parallel Computing,
19(10):1079-1103, 1993.

Conrado Martinez and Salvador Roura. Optimal sampling strategies in quicksort and
quickselect. SIAM Journal on Computing, 31(3):683-705, 2001.

E. L. G. Saukas and S. W. Song. A note on parallel selection on coarse-grained multi-
computers. Algorithmica, 24(3-4), 1999.

ELG Saukas and SW Song. A note on parallel selection on coarse-grained multicom-
puters. Algorithmica, 24(3):371-380, 1999.

Hari Sundar, Dhairya Malhotra, and George Biros. Hyksort. Proceedings of the 27th
international ACM conference on International conference on supercomputing - 1CS
15, 2013.

B. Wagar. Hyperquicksort: A fast sorting algorithm for hypercubes. Hypercube Mul-
tiprocessors, 1987:292—-299, 1987.

Andrew W Wilson Jr. Hierarchical cache/bus architecture for shared memory multi-
processors. In Proceedings of the 14th annual International symposium on Computer
architecture, pages 244-252, 1987.

Lingxiao Zeng. Two parallel sorting algorithms for massive data. 2021 IEEE Inter-
national Conference on Artificial Intelligence and Computer Applications (ICAICA),
2021.

11

